Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spatially resolved photocurrent mapping of efficient organic solar cells fabricated on a woven mesh electrode

Identifieur interne : 000514 ( Main/Repository ); précédent : 000513; suivant : 000515

Spatially resolved photocurrent mapping of efficient organic solar cells fabricated on a woven mesh electrode

Auteurs : RBID : Pascal:13-0193168

Descripteurs français

English descriptors

Abstract

Flexible organic photovoltaic devices may soon find applications in various fields, such as portable electronics or building-integrated photovoltaics, occupying market niches that are currently not covered by the prevailing photovoltaic technology based on silicon and other inorganic materials. For these applications, there is an urgent need to replace the commonly used indium tin oxide by transparent and electrically conductive materials that can be processed cost-effectively by large-area compatible printing and coating processes. Here, we fabricated P3HT/PCBM organic solar cells with a power conversion efficiency of 3.1% on a flexible, transparent and conductive woven fabric electrode. The electrode is produced by a roll-to-roll process and consists of a polymer-embedded fibre/metal wire grid. Metal wires protrude as little as 5 μm from the electrode plane, providing electrical contact points on a smooth surface suitable for thin film deposition. The use of spatially resolved photocurrent mapping experiments showed a high level of detailed information, with the unexpected indication that there probably exists a maximum in the cell performance versus mesh size opening and that woven fabric electrodes with largest geometrical open area do not necessarily perform better.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0193168

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Spatially resolved photocurrent mapping of efficient organic solar cells fabricated on a woven mesh electrode</title>
<author>
<name sortKey="Kylberg, William" uniqKey="Kylberg W">William Kylberg</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Empa, Swiss Federal Institute for Materials Science and Technology, Laboratory for Functional Polymers, Überlandstrasse 129</s1>
<s2>8600 Dübendorf</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8600 Dübendorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Araujo De Castro, Fernando" uniqKey="Araujo De Castro F">Fernando Araujo De Castro</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>National Physical Laboratory, Hampton Road, Teddington</s1>
<s2>Middlesex TW11 0LW</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Middlesex TW11 0LW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chabrecek, Peter" uniqKey="Chabrecek P">Peter Chabrecek</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Sefar AG, Freibach</s1>
<s2>9425 Thai</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>9425 Thai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Geiger, Thomas" uniqKey="Geiger T">Thomas Geiger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Empa, Swiss Federal Institute for Materials Science and Technology, Laboratory for Functional Polymers, Überlandstrasse 129</s1>
<s2>8600 Dübendorf</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8600 Dübendorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Heier, Jakob" uniqKey="Heier J">Jakob Heier</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Empa, Swiss Federal Institute for Materials Science and Technology, Laboratory for Functional Polymers, Überlandstrasse 129</s1>
<s2>8600 Dübendorf</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8600 Dübendorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nicholson, Patrick G" uniqKey="Nicholson P">Patrick G. Nicholson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>National Physical Laboratory, Hampton Road, Teddington</s1>
<s2>Middlesex TW11 0LW</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Middlesex TW11 0LW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="N Esch, Frank" uniqKey="N Esch F">Frank N Esch</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Empa, Swiss Federal Institute for Materials Science and Technology, Laboratory for Functional Polymers, Überlandstrasse 129</s1>
<s2>8600 Dübendorf</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8600 Dübendorf</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Theocharous, Evangelos" uniqKey="Theocharous E">Evangelos Theocharous</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>National Physical Laboratory, Hampton Road, Teddington</s1>
<s2>Middlesex TW11 0LW</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Middlesex TW11 0LW</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sonderegger, Uriel" uniqKey="Sonderegger U">Uriel Sonderegger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Sefar AG, Freibach</s1>
<s2>9425 Thai</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>9425 Thai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hany, Roland" uniqKey="Hany R">Roland Hany</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Empa, Swiss Federal Institute for Materials Science and Technology, Laboratory for Functional Polymers, Überlandstrasse 129</s1>
<s2>8600 Dübendorf</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8600 Dübendorf</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0193168</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0193168 INIST</idno>
<idno type="RBID">Pascal:13-0193168</idno>
<idno type="wicri:Area/Main/Corpus">000D20</idno>
<idno type="wicri:Area/Main/Repository">000514</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1062-7995</idno>
<title level="j" type="abbreviated">Prog. photovolt.</title>
<title level="j" type="main">Progress in photovoltaics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Building integrated photovoltaics</term>
<term>Butyric acid</term>
<term>Coating process</term>
<term>Conducting material</term>
<term>Conversion rate</term>
<term>Electric contact</term>
<term>Embedded transducer</term>
<term>Energy conversion</term>
<term>Ester</term>
<term>Fullerene compounds</term>
<term>ITO layers</term>
<term>Indium oxide</term>
<term>Inorganic material</term>
<term>Manufacturing process</term>
<term>Mapping</term>
<term>Metal grid</term>
<term>Organic electronics</term>
<term>Organic solar cells</term>
<term>Performance evaluation</term>
<term>Photoelectric current</term>
<term>Photovoltaic cell</term>
<term>Polymer fibers</term>
<term>Portable equipment</term>
<term>Roll-to-roll process</term>
<term>Silicon</term>
<term>Smooth surface</term>
<term>Thin film</term>
<term>Thiophene derivative polymer</term>
<term>Tin addition</term>
<term>Transparent material</term>
<term>Woven material</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Courant photoélectrique</term>
<term>Mappage</term>
<term>Cellule solaire organique</term>
<term>Electronique organique</term>
<term>Dispositif photovoltaïque</term>
<term>Appareil portatif</term>
<term>Dispositif photovoltaïque intégré bâtiment</term>
<term>Matériau minéral</term>
<term>Couche ITO</term>
<term>Addition étain</term>
<term>Procédé revêtement</term>
<term>Procédé fabrication</term>
<term>Conversion énergie</term>
<term>Taux conversion</term>
<term>Tissu textile</term>
<term>Transducteur enfoui</term>
<term>Grille métallique</term>
<term>Contact électrique</term>
<term>Surface lisse</term>
<term>Evaluation performance</term>
<term>Silicium</term>
<term>Oxyde d'indium</term>
<term>Matériau conducteur</term>
<term>Matériau transparent</term>
<term>Thiophène dérivé polymère</term>
<term>Acide butyrique</term>
<term>Ester</term>
<term>Composé du fullerène</term>
<term>Fibre polymère</term>
<term>Couche mince</term>
<term>ITO</term>
<term>Procédé roll-to-roll</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Flexible organic photovoltaic devices may soon find applications in various fields, such as portable electronics or building-integrated photovoltaics, occupying market niches that are currently not covered by the prevailing photovoltaic technology based on silicon and other inorganic materials. For these applications, there is an urgent need to replace the commonly used indium tin oxide by transparent and electrically conductive materials that can be processed cost-effectively by large-area compatible printing and coating processes. Here, we fabricated P3HT/PCBM organic solar cells with a power conversion efficiency of 3.1% on a flexible, transparent and conductive woven fabric electrode. The electrode is produced by a roll-to-roll process and consists of a polymer-embedded fibre/metal wire grid. Metal wires protrude as little as 5 μm from the electrode plane, providing electrical contact points on a smooth surface suitable for thin film deposition. The use of spatially resolved photocurrent mapping experiments showed a high level of detailed information, with the unexpected indication that there probably exists a maximum in the cell performance versus mesh size opening and that woven fabric electrodes with largest geometrical open area do not necessarily perform better.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1062-7995</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. photovolt.</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Spatially resolved photocurrent mapping of efficient organic solar cells fabricated on a woven mesh electrode</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KYLBERG (William)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ARAUJO DE CASTRO (Fernando)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHABRECEK (Peter)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GEIGER (Thomas)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HEIER (Jakob)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>NICHOLSON (Patrick G.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>NÜESCH (Frank)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>THEOCHAROUS (Evangelos)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>SONDEREGGER (Uriel)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>HANY (Roland)</s1>
</fA11>
<fA14 i1="01">
<s1>Empa, Swiss Federal Institute for Materials Science and Technology, Laboratory for Functional Polymers, Überlandstrasse 129</s1>
<s2>8600 Dübendorf</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Sefar AG, Freibach</s1>
<s2>9425 Thai</s2>
<s3>CHE</s3>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>National Physical Laboratory, Hampton Road, Teddington</s1>
<s2>Middlesex TW11 0LW</s2>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>652-657</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26755</s2>
<s5>354000174777700260</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>18 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0193168</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in photovoltaics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Flexible organic photovoltaic devices may soon find applications in various fields, such as portable electronics or building-integrated photovoltaics, occupying market niches that are currently not covered by the prevailing photovoltaic technology based on silicon and other inorganic materials. For these applications, there is an urgent need to replace the commonly used indium tin oxide by transparent and electrically conductive materials that can be processed cost-effectively by large-area compatible printing and coating processes. Here, we fabricated P3HT/PCBM organic solar cells with a power conversion efficiency of 3.1% on a flexible, transparent and conductive woven fabric electrode. The electrode is produced by a roll-to-roll process and consists of a polymer-embedded fibre/metal wire grid. Metal wires protrude as little as 5 μm from the electrode plane, providing electrical contact points on a smooth surface suitable for thin film deposition. The use of spatially resolved photocurrent mapping experiments showed a high level of detailed information, with the unexpected indication that there probably exists a maximum in the cell performance versus mesh size opening and that woven fabric electrodes with largest geometrical open area do not necessarily perform better.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Courant photoélectrique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Photoelectric current</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Corriente fotoeléctrica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Mappage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Mapping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Carta de datos</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Electronique organique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Organic electronics</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Electrónica orgánica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Appareil portatif</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Portable equipment</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Aparato portátil</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Dispositif photovoltaïque intégré bâtiment</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Building integrated photovoltaics</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Matériau minéral</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Inorganic material</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Material inorgánico</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>ITO layers</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Procédé revêtement</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Coating process</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Procedimiento revestimiento</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Procédé fabrication</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Manufacturing process</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Procedimiento fabricación</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Conversion énergie</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Energy conversion</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Conversión energética</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Tissu textile</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Woven material</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Tela textil</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Transducteur enfoui</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Embedded transducer</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Transductor embebido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Grille métallique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Metal grid</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Rejilla metálica</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Contact électrique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Electric contact</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Contacto eléctrico</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Surface lisse</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Smooth surface</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Superficie lisa</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Silicio</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Matériau conducteur</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Conducting material</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Material conductor</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Matériau transparent</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Transparent material</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Material transparente</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Acide butyrique</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Butyric acid</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Butírico ácido</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Ester</s0>
<s5>28</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Ester</s0>
<s5>28</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Ester</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Composé du fullerène</s0>
<s5>29</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Fullerene compounds</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Fibre polymère</s0>
<s5>30</s5>
</fC03>
<fC03 i1="29" i2="3" l="ENG">
<s0>Polymer fibers</s0>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>31</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>31</s5>
</fC03>
<fC03 i1="30" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>31</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>Procédé roll-to-roll</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="32" i2="X" l="ENG">
<s0>Roll-to-roll process</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>175</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000514 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000514 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0193168
   |texte=   Spatially resolved photocurrent mapping of efficient organic solar cells fabricated on a woven mesh electrode
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024